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Abstract-In recent years XML has become very popular for 
representing semi structured data and a standard for data exchange 
over the web. Mining XML data from the web is becoming increasingly 
important. Several encouraging attempts at developing methods for 
mining XML data have been proposed. However, efficiency and 
simplicity are still a barrier for further development. Normally, pre-
processing or post-processing are required for mining XML data, such 
as transforming the data from XML format to relational format. In this 
paper, we show that extracting association rules from XML documents 
without any pre-processing or post-processing using XQuery is possible 
and analyze the XQuery implementation of the well-known Apriori 
algorithm. In addition, we suggest features that need to be added into 
XQuery in order to make the implementation of the Apriori algorithm 
more efficient. 
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I.  INTRODUCTION 
The web is rich with information. However, the data 
contained in the web is not well organized which makes 
obtaining useful information from the web a difficult task. 
The successful development of eXtensible Markup 
Language (XML) [1] as a standard to represent semi 
structured data makes the data contained in the web more 
readable and the task of mining useful information from the 
web becomes feasible. Although tools for mining 
information from XML data are still in their infancy, they 
are starting to emerge. As mentioned in [13], the fast 
growing amount of available XML data, raises a pressing 
need for languages and tools to manage collections of XML 
documents, as well as to mine interesting information from 
them. There are developments like Xyleme [2, 3] which is a 
huge warehouse integrating XML data from the web, and 
also vendors of data management tools such as Microsoft, 
Oracle and IBM, who have focused on incorporating XML 
technologies in their products. Therefore, it is essential that 
direct techniques for mining XML data are developed. The 
query language XQuery [4] was proposed by the W3C [5] and 
is currently in “last call” status. The purpose of XQuery is to 
provide a flexible way to extract XML data and provide 

the necessary interaction between the web world and 
database world. XQuery is expected to become the standard 
query language for extracting XML data from XML 
documents. Therefore, if we can mine XML data using 
XQuery, then we can integrate the data mining technique 
into XML native databases. So, we are interested to know 
whether XQuery is expressive enough to mine XML data. 
One data mining technique that has proved popular is 
association rule mining[11, 12] It finds associations between 
items in a database. In this paper, we show that XML data 
can be mined using XQuery and discuss the XQuery 
implementation of the well-known Apriori algorithm. 

Moreover, we discuss other useful capabilities that need to 
be added into XQuery to make association rule mining 
efficient. The outline of this paper is as follows. In section II, 
we discuss the related work. In section  
III, we discuss the basic concept of association rule mining. 
In section IV, we describe the XQuery implementation of the 
Apriori algorithm that is used to mine XML data in order to 
discover association rules. In section V, we analyze the 
performance of the XQuery implementation. In section VI, 
we discuss the features that can be added into XQuery in 
order to make the implementation of the Apriori algorithm 
more efficient. We conclude this paper and discuss the future 
direction of our research in section 7. 
 

II.   RELATED WORK 
Algorithms for mining association rules from relational data 
have been well developed. Several query languages have 
been proposed, to assist association rule mining such as [15, 

16]. The topic of mining XML data has received little 
attention, as the data mining community has focused on the 
development of techniques for extracting common structure 
from heterogeneous XML data. For instance, [19] has 
proposed an algorithm to construct a frequent tree by finding 
common sub trees embedded in the heterogeneous XML 
data. On the other hand, some researchers focus on 
developing a standard model to represent the knowledge 
extracted from the data using XML. For example, the 
Predictive Model Markup Language (PMML) [6] is an 
XML-based language, which provides a way for applications 
to define statistical and data mining models and to share 
models between PMML compliant applications. To date, 
mining XML documents requires mapping the data to the 
relational data model and using techniques designed for 
relational databases to do the mining. For instance, the 
XMINE operator has been introduced by Braga et al. [13] for 
extracting association rules from XML documents, where 
mapping the XML data to a relational structure is required 
before mining is performed. 

 
III.   ASSOCIATION RULES 

In this section we overview the basic concepts of association 
rule mining. We refer the reader to [11, 12] for further details. 
Association rule mining was first introduced by Agrawal et 
al.[11], and was used for market basket analysis. The problem 
of mining association rules can be explained as follows: 
There is the itemset I = i1, i2,. . ., in, where I is a set of n 
distinct items, and a set of transactions D, where each 
transaction T is a set of items such that T _ I. Table 1 gives 
an example where a database D contains a set of transactions 
T, and each  
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TABLE I AN EXAMPLE DATABASE 

 
An association rule is an implication of the form X ) Y, 
where X, Y _ I and X \ Y = ;.The rule X ) Y has supports in 
the transaction set D if s% of transactions in D contain X [ 
Y. The support for a rule is defined as support(X[Y). The 
rule X) Y holds in the transaction set D with confidence c if 
c% of transactions in D that contain X also contain Y. The 
confidence for a rule is defined as support(X[Y)/support(X). 
For example, consider the database in table 1. When people 
buy bread and butter, they also buy milk in 66% of the cases 
and 80% of the transactions with bread and butter also 
contain milk. Such a rule can represented as 
“bread,butter)milk|support=0.66,confidence=0.8” Not all the 
rules found are useful and the number of rules generated 
maybe enormous. Therefore, the task of mining association 
rules is to generate all association rules that have support and 
confidence greater than the user-defined minimum support 
(minsup) and minimum confidence (minconf) respectively. 
An itemset with minimum support is called the large (or 
frequent) itemset. The rule X ) Y is a strong rule iff X[Y is in 
the large itemset and its confidence is greater than or equal 
to minconf. Normally, the task of mining association rules 
can be decomposed into two sub-tasks: 
1. Discover all large itemsets in the set of transactions D. In 
section 2.1, we give the algorithm Apriori for solving this 
problem. 
2. Use the large itemsets to generate the strong rules. The 
algorithm for this task is simple. For every large itemset l1, 
find all large itemsets l2 such that l2 _ l1 where support(l1 [ 
l2) / support(l2) _ minconf. For every such large itemset l2, 
output a rule of the form l2 ) (l1 - l2). The performance of 
mining association rules is mainly dependent on the large 
itemsets discovery process (step 1), since the cost of the 
entire process comes from reading the database (I/O time) to 
generate the support of candidates (CPU time) and the 
generation of new candidates (CPU time). Therefore, it is 
important to have an efficient algorithm for large itemsets 
discovery. 
 
A.  Algorithm Apriori 
The Apriori algorithm [12] uses a bottom-up breadth first 
approach to finding the large itemsets. It starts from large 1-
itemsets and then extends one level up in every pass until all 
large itemsets are found. For each pass, say pass k, there are 
three operations. First, append the large (k-1)-itemsets to L. 
Next, generate the potential large k-itemsets using the (k-1)-
itemsets. Such potential large itemsets are called candidate 
itemsets C. The candidate generation procedure consists of 
two steps: 

1. Join step – generate k-itemsets by joining lk−1 with itself. 
2. Prune step – remove the itemset X generated from the join 
step, if any of the subsets of X is not large. Since any subset 
of a large itemset must be large. This can be written formally 
as follows: 
C0 = {X[ Y | X, Y 2 lk−1, |X[Y|=k+1 } 
C = {X 2 C0, 8 Y _ X | |Y| = k-1 and Y 2 lk−1} 
In the last operation, we select the itemset X from the 
candidate itemsets where support(X) _ minsup. 
Figure 1 gives the general Apriori algorithm and table 2 
summarizes the notation used in the algorithm. 
Algorithm Apriory Algorithm 
Input A Database D and minimum support minsup 
Output All large itemsets 

1) Lk=Ø; k=0; 
2) C1= All distinct items in D 
3) L1= large itemsets in C1 
4) While Lk+1 is not empty 
5) Ck+1=Candidate-gen(Lk) 
6) Lk+1=large itemsets in Ck+1 
7) k++ 
8) return U L 
 

Fig. 1: Algorithm Apriori 

 
TABLE II  NOTATION 
 

Notation Definition 
k-itemset An itemset having k items 
Ck Set of candidate k-itemsets 
Lk Set of large k-itemsets 

 
We should mention here that there exists other algorithms 
for generating large itemsets such as [9, 10,14, 17, 21]. We 
have chosen this one because it is easyto understand. We are 
in the process of implementing the others but this work is 
outside the scope of this paper.  
 
IV.    XQUERY EXPRESSION FOR MINING    
     ASSOCIATION RULES FROM XML DATA 
 In this section, we introduce association rules from XML 
data and give an example of association rule mining using 
XQuery. For the purpose of the following discussion, we 
assume that the reader has some knowledge of XQuery and 
refer the reader to [4] for further details. We refer to the 
sample XML document, depicted in Fig. 2 where 
information about the items purchased in each transaction 
are represented. For example, the set of transactions are 
identified by the tag <transactions> and each transaction in 
the transactions set is identified by the tag <transaction>. 
The set of items in each transaction 
<transactions> 
         <transaction id=”1”> 

<items> 
       <item>a</item> 
       <item>d</item> 
       <item>e</item> 
</items> 

        </transaction> 
        <transaction id=”2”> 

tid items 
1 {bread, butter, milk} 
2 {bread, butter, milk, ice cream} 
3 {ice cream, coke} 
4 {battery, bread, butter, milk} 
5 {bread, butter, milk} 
6 {battery, ice cream, bread, butter} 
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<items> 
       <item>b</item> 
       <item>c</item> 
       <item>d</item> 
</items> 

        </transaction> 
        <transaction id=”3”> 
 

<items> 
       <item>a</item> 
       <item>c</item> 
        
</items> 

       </transaction> 
       <transaction id=”4”> 

<items> 
       <item>b</item> 
       <item>c</item> 
       <item>d</item> 
</items> 

        </transaction> 
        <transaction id=”5”> 

<items> 
       <item>a</item> 
       <item>b</item> 

                            </items> 
        </transaction> 
 
</transactions> 

Fig. 2: Transaction document (transactions.xml) 
 

are identified by the tag <items> and an item is identified by 
the tag <item>. Consider the problem of mining all 
association rules among items that appear in the transactions 
document as shown in Figure 2. With the understanding of 
traditional association rule mining we expect to obtain the 
large itemsets document and association rules document 
from the source document. Let us set the minimum support 
(minsup) = 40% and minimum confidence (minconf) = 
100%. We now present the XQuery expression which 
computes the association rules. 
 
let $src := document(“/transactions.xml”)//items 
let $minsup := 0.4 
let $total := count($src) * 1.00 
let $C := distinct-values($src/*) 
let $l :=(for $itemset in $C 
              let $items := (for $item in $src/* 
                             where $itemset = $item 
                             return $item) 
               let $sup := (count($items) * 1.00) div $total 
where $sup >= $minsup 
return <largeItemset> 
                            <items> {$itemset} </items> 
                            <support> {$sup} </support> 
            </largeItemset>) 
let $L := $l 
return <largeItemsets> {apriori($l, $L,$minsup, $total, $src)} 
</largeItemsets> 


The computation of the above expressions begins with 
several let clauses where we specify the data source $src, the 

support threshold $minsup and total number of transaction 
$total in the data source (transactions.xml). Next, it starts to 
generate the candidate 1-itemsets $C. Once the candidate 1- 
itemsets are available, we are ready to generate the large 1-
itemset $l by scanning through the transactions document to 
obtain the support value of each candidate 1-itemset and 
remove the one which is less than minsup. The variable $L is 
used to collect all the large itemsets in the transaction 
document. Finally, it will pass the information (e.g. $l, $L, 
$minsup, $total) to the recursive function apriori in the 
return clause to generate the other large itemsets. The 
XQuery expressions for the user-defined function apriori are 
as follows: 

 
Fig. 3: Process of generating the large itemsets document in relational 
representation 

 
define function apriori(element $l, element $L, element 
$minsup, element $total, element $src) returns element { 
        let $C := removeDuplicate(candidateGen($l)) 
        let $l := getLargeItemsets($C, $minsup, $total, $src) 
        let $L := $l union $L 
        return if (empty($l)) then 
                       $L 
                   else 
                      apriori($l, $L, $minsup, $total, $src) 
} 
The function apriori is called once in each level,it generates 
the candidate set C in the current level by joining the large 
itemsets in the previous level. It then removes the 
unnecessary itemsets from C and obtains the large itemsets 
by reading the database to calculate the support. Figure 3 
illustrates the process of generating large itemsets. We refer 
the interested reader to [20] for the details of the XQuery 
implementation of Apriori algorithm. Fig. 4 shows all the 
large itemsets generated by our XQuery queries. 
<largeitemsets> 
              <largeitemset> 
                       <items> 
                             <item>a</item> 
                       </items> 
                       <support>0.6</support> 
              </largeitemset>   
              <largeitemset> 
                       <items> 
                             <item>d</item> 
                       </items> 
                       <support>0.6</support> 
              </largeitemset>      
              <largeitemset> 
                       <items> 
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                             <item>b</item> 
                       </items> 
                       <support>0.6</support> 
              </largeitemset>      
              <largeitemset> 
                       <items> 
                             <item>c</item> 
                       </items> 
                       <support>0.6</support> 
              </largeitemset>      
              <largeitemset> 
                       <items> 
                             <item>d</item> 
                             <item>b</item> 
 
                       </items> 
                       <support>0.4</support> 
              </largeitemset>      
              <largeitemset> 
                       <items> 
                             <item>d</item> 
                             <item>c</item> 
                       </items> 
                       <support>0.4</support> 
              </largeitemset>      
              <largeitemset> 
                       <items> 
                             <item>b</item> 
                             <item>c</item> 
                       </items> 
                       <support>0.4</support> 
              </largeitemset>      
              <largeitemset> 
                       <items> 
                             <item>d</item> 
                             <item>c</item> 
                             <item>b</item> 
                       </items> 
                       <support>0.4</support> 
              </largeitemset>         
</largeitemsets> 

Fig. 4: Large Itemsets document (large.xml) 

 
Now that we have explained how to generate the large 
itemset document, we can move on to discuss how to 
compute the association rules from the large itemsets. We 
present the following XQuery expression that computes the 
rules document. 
 
let $minconf := 1.00 
let $src := document(“/large.xml”)//largeItemset 
for $itemset1 in $src 
let $items1 := $itemset1/items/* 
        for $itemset2 in $src 
              let $items2 := $itemset2/items/* 
              where count($items1) > count($items2) and 
                      count(commonIts($items1, $items2)) = 
                      count($items2) and $itemset1/support div 
                      $itemset2/support _ $minconf 
              return <rule support =“{$itemset1/support}” 
                          confidence = “{($itemset1/support*1.0) div 

                                               ($itemset2/support*1.0)}”> 
                         <antecedent> {$items2} </antecedent> 
                         <consequent> 
                                   {removeItems($items1,$items2)} 
                         </consequent> 
                         </rule> 
 

The above expression can be explained as follows. 
For each large itemset X in the large itemsets document, we 
look for other itemsets Y in the large itemsets document 
such that Y _ X and support(X[Y) / support(Y) _ minconf. 
The association rules generated by the above queries are 
shown in Fig. 5. 
 
<rules> 
        <rule support=0.4 confidence=”1.0”> 
                <antecedent> 
                                  <item>d</item> 
                                  <item>b</item> 
                      </ antecedent> 
                      <consequent> 
                                  <item>c</item> 
                      </consequent> 
        </rule>    
        <rule support=0.4 confidence=”1.0”> 
                <antecedent> 
                                  <item>d</item> 
                                  <item>c</item> 
                      </ antecedent> 
                      <consequent> 
                                  <item>b</item> 
                      </consequent> 
        </rule>    
        <rule support=0.4 confidence=”1.0”> 
                <antecedent> 
                                  <item>b</item> 
                                  <item>c</item> 
                      </ antecedent> 
                      <consequent> 
                                  <item>d</item> 
                      </consequent> 
        </rule>    
</rules> 

Fig. 5: Association Rules document(rules.xml) 

 
As we can see from Fig. 5, the data inside the rules 
document is self describing. For example, the set of rules are 
identified by the tag <rules> and each rule is identified by 
the tag <rule> with two attributes support and confidence to 
describe the strength of the rule. Inside the tag <rule>, there 
are two sub-tags <antecedent> and <consequent> which are 
used to identify the items, antecedent or consequent of the 
rule. 

 
V.   PERFORMANCE ANALYSIS 

 
TABLE III  DESCRIPTION OF DIFFERENT DATASETS 

Datasets 
Number of 
transactions 

Average number of 
items per transaction 

dataset-1 100 11 
dataset-2 500 10 
dataset-3 1000 10 
*30 distinct items and maximum items in each transaction is 20 
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We study the performance for the XQuery implementation 
of the Apriori algorithm using the datasets summarized in 
table 3. The datasets are generated randomly depending on 
the number of distinct items, the maximum number of items 
in each transaction and the number of transactions. Our 
experiment is performed on the XQuery engine inside the 
native XML database X-Hive/DB 4.1 [7] installed on an 
Intel Pentium 4, 1.8MHz system running Window XP 
Professional with 256 MB main memory. Fig. 4. shows the 
results of our experiment. 
 

 
Fig. 4a: Time vs Minimum Support 

 

 
Fig. 4b: Number of large itemsets vs Minimum Support 

 
We see that the performance of the XQuery implementation 
is dependent on the number of large itemsets found and the 
size of the dataset. For example, the number of large 
itemsets found from dataset-1 is much more than dataset-2 
and dataset-3 with minimum support 20%. The running time 
for dataset-1 with minimum support 20% is much higher 
than the running time of dataset-2 and dataset-3, since the 
number of large itemsets found for dataset-1 is about 2.4 
times more than the other datasets. 
We also notice that the majority of the time for the XQuery 
implementation is spent in counting support to find large 
itemsets. The XQuery implementation requires that for each 
itemset in the Candidate set, it will read the database once to 
obtain the support value. Therefore, the number of times 
needed to scan the database to obtain the support count for 
finding large itemsets is O(2l), where l is the length of the 
maximal large itemset. This is very inefficient compared 
with the implementation in other languages. For instance, the 

C++ implementation of the Apriori algorithm by Goethals 
[8] scans the database to obtain the support count for finding 
large itemsets l times, so only needs to scan the database 
once in each pass. The reason why the number of times 
needed to scan the database for the XQuery implementation 
is significantly higher than the C++ implementation is that, 
in XQuery we cannot store the support value for the itemsets 
but instead return it in a query. Therefore, it is difficult to 
read a record in the database and update the support count 
for the itemsets using XQuery. This means that the whole 
database needs to be read for each candidate itemset. The 
results of our experiments shown that XQuery is more 
suitable for mining data from small datasets. 
 

VI.   EXTENSION TO XQUERY 
As discussed in the last section, the number of times needed 
to read the database for the XQuery implementation of the 
Aprori algorithm is much more than the C++ 
implementation. To improve the performance of the XQuery 
implementation of the Apriori algorithms, operations such as 
update and insert must be added into XQuery. Tatarinov et 
al. [18] also highlight the need for update capabilities for 
modifying XML documents, and also for propagating 
changes through XML views and for expressing and 
transmitting changes to documents. With the update 
capabilities added into XQuery, it is possible to reduce the 
number of times needed to read the database in the large 
itemset discovery step. For example, assume that there is an 
update operation in XQuery. For each level of computing 
large itemsets, we create a XML document which contains 
all the candidate itemsets with the corresponding support at 
the current level. Then when reading each record t from the 
source XML document, find itemsets from the candidate set 
document which are the subset of the itemsets in t and 
increment their corresponding support count. After reading 
the whole source XML document, large itemsets in the 
current level are found and candidate itemsets in the next 
level can be generated. We can see that the number of times 
needed to read the database is reduced significantly, that is it 
is now equal to l, rather than O (2l), where l is the length of 
the maximal large itemset. 

 
VII.   CONCLUSION 

In this paper, we show how XQuery can be used to extract 
association rules from XML data and we analyze the 
performance of the XQuery implementation of the Apriori 
algorithm. Our results show that the XQuery implementation 
of the Apriori algorithm is not efficient, and the number of 
times it needs to read the database (i.e., I/O time) is much 
more than a C++ implementation. In order to improve the 
efficiency of the XQuery implementation, we suggest an 
update operation is added into XQuery. With the update 
operation added into XQuery, not only the performance of 
the XQuery implementation of the Apriori algorithm can be 
improved, but it is also possible to propagate changes 
through XML views and express and transmit changes to 
documents [18]. 
 Although this research is a good starting point, there are still 
many issues that remain open. One of the issues concerns the 
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structure of the XML data. Our algorithm currently mines 
any set of items that we can write a path expression for. 
However, the structure of the XML data can be more 
complex or irregular than this, so identifying the mining 
context of such XML data becomes difficult. Therefore, to 
simplify the task of identifying the context, a set of 
transformations of the XML data might be required. Another 
direction is to extend our problem by mining association 
rules from more than one XML document, where documents 
have different structure. 
 Our current and future research in this area focuses on 
investigating how much the XQuery implementation of the 
Apriori algorithm can be improved with the update operation 
Also, we are interested to know if it is possible to implement 
algorithms like FPgrowth [14] where candidate generation is 
not needed. 
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