
Application of Web Mining with XML Data using
XQuery

Roop Ranjan,Ritu Yadav ,Jaya Verma
Department of MCA,ITS Engineering College,Plot no-43, Knowledge Park 3,Greater Noida

Abstract-In recent years XML has become very popular for
representing semi structured data and a standard for data exchange
over the web. Mining XML data from the web is becoming increasingly
important. Several encouraging attempts at developing methods for
mining XML data have been proposed. However, efficiency and
simplicity are still a barrier for further development. Normally, pre-
processing or post-processing are required for mining XML data, such
as transforming the data from XML format to relational format. In this
paper, we show that extracting association rules from XML documents
without any pre-processing or post-processing using XQuery is possible
and analyze the XQuery implementation of the well-known Apriori
algorithm. In addition, we suggest features that need to be added into
XQuery in order to make the implementation of the Apriori algorithm
more efficient.

Keywords: XQuery, XML, Association Rule mining, Web mining,
Apriori algorithm

I. INTRODUCTION
The web is rich with information. However, the data
contained in the web is not well organized which makes
obtaining useful information from the web a difficult task.
The successful development of eXtensible Markup
Language (XML) [1] as a standard to represent semi
structured data makes the data contained in the web more
readable and the task of mining useful information from the
web becomes feasible. Although tools for mining
information from XML data are still in their infancy, they
are starting to emerge. As mentioned in [13], the fast
growing amount of available XML data, raises a pressing
need for languages and tools to manage collections of XML
documents, as well as to mine interesting information from
them. There are developments like Xyleme [2, 3] which is a
huge warehouse integrating XML data from the web, and
also vendors of data management tools such as Microsoft,
Oracle and IBM, who have focused on incorporating XML
technologies in their products. Therefore, it is essential that
direct techniques for mining XML data are developed. The
query language XQuery [4] was proposed by the W3C [5] and
is currently in “last call” status. The purpose of XQuery is to
provide a flexible way to extract XML data and provide

the necessary interaction between the web world and
database world. XQuery is expected to become the standard
query language for extracting XML data from XML
documents. Therefore, if we can mine XML data using
XQuery, then we can integrate the data mining technique
into XML native databases. So, we are interested to know
whether XQuery is expressive enough to mine XML data.
One data mining technique that has proved popular is
association rule mining[11, 12] It finds associations between
items in a database. In this paper, we show that XML data
can be mined using XQuery and discuss the XQuery
implementation of the well-known Apriori algorithm.

Moreover, we discuss other useful capabilities that need to
be added into XQuery to make association rule mining
efficient. The outline of this paper is as follows. In section II,
we discuss the related work. In section
III, we discuss the basic concept of association rule mining.
In section IV, we describe the XQuery implementation of the
Apriori algorithm that is used to mine XML data in order to
discover association rules. In section V, we analyze the
performance of the XQuery implementation. In section VI,
we discuss the features that can be added into XQuery in
order to make the implementation of the Apriori algorithm
more efficient. We conclude this paper and discuss the future
direction of our research in section 7.

II. RELATED WORK
Algorithms for mining association rules from relational data
have been well developed. Several query languages have
been proposed, to assist association rule mining such as [15,

16]. The topic of mining XML data has received little
attention, as the data mining community has focused on the
development of techniques for extracting common structure
from heterogeneous XML data. For instance, [19] has
proposed an algorithm to construct a frequent tree by finding
common sub trees embedded in the heterogeneous XML
data. On the other hand, some researchers focus on
developing a standard model to represent the knowledge
extracted from the data using XML. For example, the
Predictive Model Markup Language (PMML) [6] is an
XML-based language, which provides a way for applications
to define statistical and data mining models and to share
models between PMML compliant applications. To date,
mining XML documents requires mapping the data to the
relational data model and using techniques designed for
relational databases to do the mining. For instance, the
XMINE operator has been introduced by Braga et al. [13] for
extracting association rules from XML documents, where
mapping the XML data to a relational structure is required
before mining is performed.

III. ASSOCIATION RULES

In this section we overview the basic concepts of association
rule mining. We refer the reader to [11, 12] for further details.
Association rule mining was first introduced by Agrawal et
al.[11], and was used for market basket analysis. The problem
of mining association rules can be explained as follows:
There is the itemset I = i1, i2,. . ., in, where I is a set of n
distinct items, and a set of transactions D, where each
transaction T is a set of items such that T _ I. Table 1 gives
an example where a database D contains a set of transactions
T, and each

Roop Ranjan Ritu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 995-1000

995

TABLE I AN EXAMPLE DATABASE

An association rule is an implication of the form X) Y,
where X, Y _ I and X \ Y = ;.The rule X) Y has supports in
the transaction set D if s% of transactions in D contain X [
Y. The support for a rule is defined as support(X[Y). The
rule X) Y holds in the transaction set D with confidence c if
c% of transactions in D that contain X also contain Y. The
confidence for a rule is defined as support(X[Y)/support(X).
For example, consider the database in table 1. When people
buy bread and butter, they also buy milk in 66% of the cases
and 80% of the transactions with bread and butter also
contain milk. Such a rule can represented as
“bread,butter)milk|support=0.66,confidence=0.8” Not all the
rules found are useful and the number of rules generated
maybe enormous. Therefore, the task of mining association
rules is to generate all association rules that have support and
confidence greater than the user-defined minimum support
(minsup) and minimum confidence (minconf) respectively.
An itemset with minimum support is called the large (or
frequent) itemset. The rule X) Y is a strong rule iff X[Y is in
the large itemset and its confidence is greater than or equal
to minconf. Normally, the task of mining association rules
can be decomposed into two sub-tasks:
1. Discover all large itemsets in the set of transactions D. In
section 2.1, we give the algorithm Apriori for solving this
problem.
2. Use the large itemsets to generate the strong rules. The
algorithm for this task is simple. For every large itemset l1,
find all large itemsets l2 such that l2 _ l1 where support(l1 [
l2) / support(l2) _ minconf. For every such large itemset l2,
output a rule of the form l2) (l1 - l2). The performance of
mining association rules is mainly dependent on the large
itemsets discovery process (step 1), since the cost of the
entire process comes from reading the database (I/O time) to
generate the support of candidates (CPU time) and the
generation of new candidates (CPU time). Therefore, it is
important to have an efficient algorithm for large itemsets
discovery.

A. Algorithm Apriori
The Apriori algorithm [12] uses a bottom-up breadth first
approach to finding the large itemsets. It starts from large 1-
itemsets and then extends one level up in every pass until all
large itemsets are found. For each pass, say pass k, there are
three operations. First, append the large (k-1)-itemsets to L.
Next, generate the potential large k-itemsets using the (k-1)-
itemsets. Such potential large itemsets are called candidate
itemsets C. The candidate generation procedure consists of
two steps:

1. Join step – generate k-itemsets by joining lk−1 with itself.
2. Prune step – remove the itemset X generated from the join
step, if any of the subsets of X is not large. Since any subset
of a large itemset must be large. This can be written formally
as follows:
C0 = {X[Y | X, Y 2 lk−1, |X[Y|=k+1 }
C = {X 2 C0, 8 Y _ X | |Y| = k-1 and Y 2 lk−1}
In the last operation, we select the itemset X from the
candidate itemsets where support(X) _ minsup.
Figure 1 gives the general Apriori algorithm and table 2
summarizes the notation used in the algorithm.
Algorithm Apriory Algorithm
Input A Database D and minimum support minsup
Output All large itemsets

1) Lk=Ø; k=0;
2) C1= All distinct items in D
3) L1= large itemsets in C1
4) While Lk+1 is not empty
5) Ck+1=Candidate-gen(Lk)
6) Lk+1=large itemsets in Ck+1
7) k++
8) return U L

Fig. 1: Algorithm Apriori

TABLE II NOTATION

Notation Definition
k-itemset An itemset having k items
Ck Set of candidate k-itemsets
Lk Set of large k-itemsets

We should mention here that there exists other algorithms
for generating large itemsets such as [9, 10,14, 17, 21]. We
have chosen this one because it is easyto understand. We are
in the process of implementing the others but this work is
outside the scope of this paper.

IV. XQUERY EXPRESSION FOR MINING
 ASSOCIATION RULES FROM XML DATA
 In this section, we introduce association rules from XML
data and give an example of association rule mining using
XQuery. For the purpose of the following discussion, we
assume that the reader has some knowledge of XQuery and
refer the reader to [4] for further details. We refer to the
sample XML document, depicted in Fig. 2 where
information about the items purchased in each transaction
are represented. For example, the set of transactions are
identified by the tag <transactions> and each transaction in
the transactions set is identified by the tag <transaction>.
The set of items in each transaction
<transactions>
 <transaction id=”1”>

<items>
 <item>a</item>
 <item>d</item>
 <item>e</item>
</items>

 </transaction>
 <transaction id=”2”>

tid items
1 {bread, butter, milk}
2 {bread, butter, milk, ice cream}
3 {ice cream, coke}
4 {battery, bread, butter, milk}
5 {bread, butter, milk}
6 {battery, ice cream, bread, butter}

Roop Ranjan Ritu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 995-1000

996

<items>
 <item>b</item>
 <item>c</item>
 <item>d</item>
</items>

 </transaction>
 <transaction id=”3”>

<items>
 <item>a</item>
 <item>c</item>

</items>

 </transaction>
 <transaction id=”4”>

<items>
 <item>b</item>
 <item>c</item>
 <item>d</item>
</items>

 </transaction>
 <transaction id=”5”>

<items>
 <item>a</item>
 <item>b</item>

 </items>
 </transaction>

</transactions>

Fig. 2: Transaction document (transactions.xml)

are identified by the tag <items> and an item is identified by
the tag <item>. Consider the problem of mining all
association rules among items that appear in the transactions
document as shown in Figure 2. With the understanding of
traditional association rule mining we expect to obtain the
large itemsets document and association rules document
from the source document. Let us set the minimum support
(minsup) = 40% and minimum confidence (minconf) =
100%. We now present the XQuery expression which
computes the association rules.

let $src := document(“/transactions.xml”)//items
let $minsup := 0.4
let $total := count($src) * 1.00
let $C := distinct-values($src/*)
let $l :=(for $itemset in $C
 let $items := (for $item in $src/*
 where $itemset = $item
 return $item)
 let $sup := (count($items) * 1.00) div $total
where $sup >= $minsup
return <largeItemset>
 <items> {$itemset} </items>
 <support> {$sup} </support>
 </largeItemset>)
let $L := $l
return <largeItemsets> {apriori($l, $L,$minsup, $total, $src)}
</largeItemsets>

The computation of the above expressions begins with
several let clauses where we specify the data source $src, the

support threshold $minsup and total number of transaction
$total in the data source (transactions.xml). Next, it starts to
generate the candidate 1-itemsets $C. Once the candidate 1-
itemsets are available, we are ready to generate the large 1-
itemset $l by scanning through the transactions document to
obtain the support value of each candidate 1-itemset and
remove the one which is less than minsup. The variable $L is
used to collect all the large itemsets in the transaction
document. Finally, it will pass the information (e.g. $l, $L,
$minsup, $total) to the recursive function apriori in the
return clause to generate the other large itemsets. The
XQuery expressions for the user-defined function apriori are
as follows:

Fig. 3: Process of generating the large itemsets document in relational
representation

define function apriori(element $l, element $L, element
$minsup, element $total, element $src) returns element {
 let $C := removeDuplicate(candidateGen($l))
 let $l := getLargeItemsets($C, $minsup, $total, $src)
 let $L := $l union $L
 return if (empty($l)) then
 $L
 else
 apriori($l, $L, $minsup, $total, $src)
}
The function apriori is called once in each level,it generates
the candidate set C in the current level by joining the large
itemsets in the previous level. It then removes the
unnecessary itemsets from C and obtains the large itemsets
by reading the database to calculate the support. Figure 3
illustrates the process of generating large itemsets. We refer
the interested reader to [20] for the details of the XQuery
implementation of Apriori algorithm. Fig. 4 shows all the
large itemsets generated by our XQuery queries.
<largeitemsets>
 <largeitemset>
 <items>
 <item>a</item>
 </items>
 <support>0.6</support>
 </largeitemset>
 <largeitemset>
 <items>
 <item>d</item>
 </items>
 <support>0.6</support>
 </largeitemset>
 <largeitemset>
 <items>

Roop Ranjan Ritu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 995-1000

997

 <item>b</item>
 </items>
 <support>0.6</support>
 </largeitemset>
 <largeitemset>
 <items>
 <item>c</item>
 </items>
 <support>0.6</support>
 </largeitemset>
 <largeitemset>
 <items>
 <item>d</item>
 <item>b</item>

 </items>
 <support>0.4</support>
 </largeitemset>
 <largeitemset>
 <items>
 <item>d</item>
 <item>c</item>
 </items>
 <support>0.4</support>
 </largeitemset>
 <largeitemset>
 <items>
 <item>b</item>
 <item>c</item>
 </items>
 <support>0.4</support>
 </largeitemset>
 <largeitemset>
 <items>
 <item>d</item>
 <item>c</item>
 <item>b</item>
 </items>
 <support>0.4</support>
 </largeitemset>
</largeitemsets>

Fig. 4: Large Itemsets document (large.xml)

Now that we have explained how to generate the large
itemset document, we can move on to discuss how to
compute the association rules from the large itemsets. We
present the following XQuery expression that computes the
rules document.

let $minconf := 1.00
let $src := document(“/large.xml”)//largeItemset
for $itemset1 in $src
let $items1 := $itemset1/items/*
 for $itemset2 in $src
 let $items2 := $itemset2/items/*
 where count($items1) > count($items2) and
 count(commonIts($items1, $items2)) =
 count($items2) and $itemset1/support div
 $itemset2/support _ $minconf
 return <rule support =“{$itemset1/support}”
 confidence = “{($itemset1/support*1.0) div

 ($itemset2/support*1.0)}”>
 <antecedent> {$items2} </antecedent>
 <consequent>
 {removeItems($items1,$items2)}
 </consequent>
 </rule>

The above expression can be explained as follows.
For each large itemset X in the large itemsets document, we
look for other itemsets Y in the large itemsets document
such that Y _ X and support(X[Y) / support(Y) _ minconf.
The association rules generated by the above queries are
shown in Fig. 5.

<rules>
 <rule support=0.4 confidence=”1.0”>
 <antecedent>
 <item>d</item>
 <item>b</item>
 </ antecedent>
 <consequent>
 <item>c</item>
 </consequent>
 </rule>
 <rule support=0.4 confidence=”1.0”>
 <antecedent>
 <item>d</item>
 <item>c</item>
 </ antecedent>
 <consequent>
 <item>b</item>
 </consequent>
 </rule>
 <rule support=0.4 confidence=”1.0”>
 <antecedent>
 <item>b</item>
 <item>c</item>
 </ antecedent>
 <consequent>
 <item>d</item>
 </consequent>
 </rule>
</rules>

Fig. 5: Association Rules document(rules.xml)

As we can see from Fig. 5, the data inside the rules
document is self describing. For example, the set of rules are
identified by the tag <rules> and each rule is identified by
the tag <rule> with two attributes support and confidence to
describe the strength of the rule. Inside the tag <rule>, there
are two sub-tags <antecedent> and <consequent> which are
used to identify the items, antecedent or consequent of the
rule.

V. PERFORMANCE ANALYSIS

TABLE III DESCRIPTION OF DIFFERENT DATASETS

Datasets
Number of
transactions

Average number of
items per transaction

dataset-1 100 11
dataset-2 500 10
dataset-3 1000 10
*30 distinct items and maximum items in each transaction is 20

Roop Ranjan Ritu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 995-1000

998

We study the performance for the XQuery implementation
of the Apriori algorithm using the datasets summarized in
table 3. The datasets are generated randomly depending on
the number of distinct items, the maximum number of items
in each transaction and the number of transactions. Our
experiment is performed on the XQuery engine inside the
native XML database X-Hive/DB 4.1 [7] installed on an
Intel Pentium 4, 1.8MHz system running Window XP
Professional with 256 MB main memory. Fig. 4. shows the
results of our experiment.

Fig. 4a: Time vs Minimum Support

Fig. 4b: Number of large itemsets vs Minimum Support

We see that the performance of the XQuery implementation
is dependent on the number of large itemsets found and the
size of the dataset. For example, the number of large
itemsets found from dataset-1 is much more than dataset-2
and dataset-3 with minimum support 20%. The running time
for dataset-1 with minimum support 20% is much higher
than the running time of dataset-2 and dataset-3, since the
number of large itemsets found for dataset-1 is about 2.4
times more than the other datasets.
We also notice that the majority of the time for the XQuery
implementation is spent in counting support to find large
itemsets. The XQuery implementation requires that for each
itemset in the Candidate set, it will read the database once to
obtain the support value. Therefore, the number of times
needed to scan the database to obtain the support count for
finding large itemsets is O(2l), where l is the length of the
maximal large itemset. This is very inefficient compared
with the implementation in other languages. For instance, the

C++ implementation of the Apriori algorithm by Goethals
[8] scans the database to obtain the support count for finding
large itemsets l times, so only needs to scan the database
once in each pass. The reason why the number of times
needed to scan the database for the XQuery implementation
is significantly higher than the C++ implementation is that,
in XQuery we cannot store the support value for the itemsets
but instead return it in a query. Therefore, it is difficult to
read a record in the database and update the support count
for the itemsets using XQuery. This means that the whole
database needs to be read for each candidate itemset. The
results of our experiments shown that XQuery is more
suitable for mining data from small datasets.

VI. EXTENSION TO XQUERY
As discussed in the last section, the number of times needed
to read the database for the XQuery implementation of the
Aprori algorithm is much more than the C++
implementation. To improve the performance of the XQuery
implementation of the Apriori algorithms, operations such as
update and insert must be added into XQuery. Tatarinov et
al. [18] also highlight the need for update capabilities for
modifying XML documents, and also for propagating
changes through XML views and for expressing and
transmitting changes to documents. With the update
capabilities added into XQuery, it is possible to reduce the
number of times needed to read the database in the large
itemset discovery step. For example, assume that there is an
update operation in XQuery. For each level of computing
large itemsets, we create a XML document which contains
all the candidate itemsets with the corresponding support at
the current level. Then when reading each record t from the
source XML document, find itemsets from the candidate set
document which are the subset of the itemsets in t and
increment their corresponding support count. After reading
the whole source XML document, large itemsets in the
current level are found and candidate itemsets in the next
level can be generated. We can see that the number of times
needed to read the database is reduced significantly, that is it
is now equal to l, rather than O (2l), where l is the length of
the maximal large itemset.

VII. CONCLUSION

In this paper, we show how XQuery can be used to extract
association rules from XML data and we analyze the
performance of the XQuery implementation of the Apriori
algorithm. Our results show that the XQuery implementation
of the Apriori algorithm is not efficient, and the number of
times it needs to read the database (i.e., I/O time) is much
more than a C++ implementation. In order to improve the
efficiency of the XQuery implementation, we suggest an
update operation is added into XQuery. With the update
operation added into XQuery, not only the performance of
the XQuery implementation of the Apriori algorithm can be
improved, but it is also possible to propagate changes
through XML views and express and transmit changes to
documents [18].
 Although this research is a good starting point, there are still
many issues that remain open. One of the issues concerns the

Roop Ranjan Ritu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 995-1000

999

structure of the XML data. Our algorithm currently mines
any set of items that we can write a path expression for.
However, the structure of the XML data can be more
complex or irregular than this, so identifying the mining
context of such XML data becomes difficult. Therefore, to
simplify the task of identifying the context, a set of
transformations of the XML data might be required. Another
direction is to extend our problem by mining association
rules from more than one XML document, where documents
have different structure.
 Our current and future research in this area focuses on
investigating how much the XQuery implementation of the
Apriori algorithm can be improved with the update operation
Also, we are interested to know if it is possible to implement
algorithms like FPgrowth [14] where candidate generation is
not needed.

REFERENCES
[1] World Wide Web Consortium. Extensible Markup Language (XML) 1.0

(Second Edition) W3C Recommendation. http://www.w3.org/XML.
[2] Xyleme. http://www.xyleme.com.
[3] Lucie Xyleme. A dynamic warehouse for XML data of the web. IEEE

Data Engineering Bulletin, 2001.
[4] World Wide Web Consortium. XQuery 1.0: An XML Query Language

(W3C Working Draft). http://www.w3.org/TR/2002/WDxquery-
 20020816, Aug. 2002.
[5] World Wide Web Consortium. http://www.w3.org.
[6] PMML 2.1 Predictive Model Markup Language. http://www.dmg.org,

March 2003.
[7] X-Hive/DB. http://www.x-hive.com.
[8] Frequent Pattern Mining Implementations.
 http://www.cs.helsinki.fi/u/goethals/software.
[9] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth first

generation of long patterns. In Proceedings of the ACM SIGKDD
 Conference,2000.
[10] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A tree projection

algorithm for Generation of frequent itemsets. volume 61, pages
350–371, 2001.

[11] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In P. Buneman and S.
Jajodia,

 editors,SIGMOD93, pages 207–216, Washington, D.C., USA, May
1993.

[12] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules in large databases. In J. B. Bocca, M. Jarke, and C. Zaniolo,
editors,

 Proceedings of 20th International Conference on Very Large Data
Bases, pages 487–499, Santiago,Chile, September 12-15 1994.

[13] D. Braga, A. Campi, M. Klemettinen, and P. L. Lanzi. Mining
association rules from xml data. In Proceedings of the 4th
International

 Conference on Data Warehousing and Knowledge Discovery (DaWaK
2002), September 4-6, Aixen-Provence,France 2002.

[14] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In W. Chen, J. Naughton, and P. A. Bernstein,

 editors, 2000 ACM SIGMOD Intl. Conference on Managemen of
Data, pages 1–12. ACM Press, 05 2000.

[15] T. Imielinski and A. Virmani. MSQL: A query language for database
mining. 1999.[16] R. Meo, G. Psaila, and S. Ceri. A new SQLlike
operator for mining association rules. In The VLDB Journal, pages
122–133, 1996.

[17] J. Pei, J. Han, and R. Mao. CLOSET: An Efficient algorithm for
mining frequent closed itemsets. In ACM SIGMOD Workshop on

 Research Issues in Data Mining and Knowledge Discovery,pages 21–
30, 2000.

[18] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML.
In SIGMOD Conference, 2001.[19] A. Termier, M.-C. Rousset,
and M. Sebag. Mining XML data with frequent trees. In
DBFusion Workshop’02, pages 87–96.

[20] J. W. W. Wan and G. Dobbie. Extracting association rules from
XML documents using XQuery. In Proceedings of Fifth International
Workshop on Web Information and Data Management,New Orleans,
LA, USA.

[21] M. J. Zaki. Generating non-redundant Association rules. In Knowledge
Discovery and Data Mining, pages 3443, 2000.

Roop Ranjan Ritu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 995-1000

1000

